Geothermal drilling – technologies and opportunities

Erlend Randeberg, IRIS, Norway

Outline

- > Background
- › Geothermal drilling challenges
- > Drilling and rock breaking
- > Paths to drilling improvements

About IRIS

- Client-oriented research institute Energy, Environment and Social Science
- Clients from trade, industry and public sector nationally and internationally
- Ca. 200 employees, from 23 different countries, 92
 PhDs
- > Main office in Stavanger, Norway

Photo: Elisabeth Tønnessen / IRIS

IRIS Energy – main areas

Drilling & well technology

Research facilities

Reservoir technology

Green technologies

Geothermal energy resources

- Geothermal gradients
 - 5-70 °C/km in the earth's crust (typically ~30 °C/km)
 - Anomalies occur (volcanic regions)
- 'Unlimited' energy resource base
 - A matter of well depth
 - <u>MIT report (2006)</u>: potential for 100 GW_e in the US
- > How to harvest the thermal energy resources?

Geothermal energy today

- 1. Low temperature systems
 - With heat pump systems
 - Seasonal storage
 - Shallow wells (some 100 meters)
 - Relatively "easy" drilling (hammer/percussive)
 - Cost-effective heat and increasingly popular
- 2. High temperature systems
 - Limited to "hydrothermal" sites typically volcanic regions
 - Up to ~4 km depth
 - Sufficient water and high natural permeability
 - Suitable for power production typically ~200 °C steam
 - Limited resource base (few regions in the world)

Unconventional geothermal well types

- "Hot dry rock" or EGS (engineered/enhanced geothermal systems)
 - › Possibility of "universal" geothermal solution
 - > Need to drill sufficiently deep (hot enough)
 - > Understanding the reservoir
 - Necessary to circulate through a large fracture network (subsurface heat exchanger)
- Future: Extreme temperatures (supercritical fluids)
 - > 400-500 °C, high pressure
 - > Hot research topic
- > A vast resource base is available

Deep geothermal vs. oil & gas

- > Geothermal wells are similar to oil & gas:
 - 1. Drilling
 - 2. Completion
 - 3. Maintenance/ intervention (production)
 - 4. Plugging and abandonment
- Technology transfer (oil & gas vs. geothermal)?
 - Different incentives for cost reduction
 - Shared markets yield high costs (compete for rigs, crew etc.)
 - Geothermal as first mover?

Cost of geothermal drilling

- > Literature: 30-70 % of plant cost on well construction
- > IEA (2011): Key R&D priority on cost-effective drilling technology
- > EGEC (2016): Target of 25 % well construction cost reduction

Some geothermal drilling cost drivers

- > "Uniqueness"/learning curve effect
- Materials (casing/cement)
- > Large hole diameters
- > High temperatures
- > Downhole environment
- > Fractured rock
- > Hard rock

Drilling cases and applications

13 October 2017

Technology development – deep hard rock (geothermal) drilling

- > Rock breaking is the single most important factor
 - Low penetration rates
 - Equipment wear and failure
- > Fundamental concerns of rock breaking process:
 - How energy is transferred to the rock (breaking the rock)
 - Controlling secondary effects (bit wear, drillstring dynamics)
 - Cuttings removal

Technologies for breaking rock

Thermal

- Flame
- Electric spark/arc
- Laser
- Electromagnetic
- • •

Fluid-based

- Jetting
- Cavitation

Chemical

- Reactive acids, fluorine etc.
- Explosives
- •

Mechanical

- Impact (axial)
- Shearing (torsional)

Mechanical drilling improvements

13 October 2017

Percussive drilling

- > Effective for hard rock
 - High rock breaking efficiency
- > Limited depth
 - Air drilling for shallow wells
 - Unconventional for deep wells
- > Development for deep drilling
 - Operation
 - Hammer
 - Drillbit
 - Drilling fluids
 - Rotary/percussive action

(Atlas Copco hammer/drillbit)

Rotary drilling

- > Today's method for deep wells
 - Efficient shearing mechanism
- > Hard rock challenges
 - Drillbit wear
 - Dysfunctional vibrations
- Development areas
 - Drillbits
 - Other tools in the string
 - Control/operation

Geothermal drilling: Short term improvements

- > Percussive drilling for deeper wells
 - Increased applicability (depth)
 - Potential for step changes
- > Rotary drilling for increasingly harder rocks
 - Shearing (PDC) bits for geothermal
 - Increased applicability (control, materials...)
 - Gradual improvements

Geothermal drilling: Longer term improvements

- > Electrical power from surface to downhole
 - Efficiency and robustness
 - Powering and direct control of drilling tool
 - Traction
 - High bandwidth communication (wired pipe)
- > Development of "unproven" methods
 - High rock breaking potential: Laser, microwaves, plasma, electric sparks etc.
 - Performance at depth, e.g. power supply, high pressure

Summary and conclusions

- > Accessing the geothermal energy is a major challenge (cost issue)
- > The Norwegian oil & gas drilling expertise gives us a benefit
 - Close collaboration with drilling industry
 - From petroleum to geothermal well construction similarities and differences
- > IRIS wants to contribute to the geothermal community

Thank you for your attention!

erlend.randeberg@iris.no

#